化 学 基 礎

(解答番号 1 ~ 18)

必要があれば、原子量は次の値を使うこと。

	н	1.0	C 12	N 14		10	Ar 40	
第	1問	次の問い	(問1~10)に	こ答えよ。(酉	己点 30)			
	_		・常圧で気体		はどれか。	最も適当	当なものを、次の	D 0 ~
	1	リチウム	2 ^	ベリリウム	③ 塩	素	4 ヨウ素	
				素に関する記 り のうちから			ひもの はどれか。]	最も
	1	アルカリ	金属元素は,	炎色反応に	より互いる	を区別する	ることができる。	
	2	2 族元素	の原子は, 2	2個の価電子	をもつ。			
	3	17 族元素	は、原子番	号の小さい元	素ほど電	気陰性度	が大きい。	

4 貴ガス(希ガス)元素の原子は、8個の最外殻電子をもつ。

ウ ドライアイスの 塊 を室温で放置すると、小さくなった。							
① ア ② イ ③ ゥ ④ ア, イ ⑤ ア, ゥ ⑥ イ, ゥ ⑦ ア, イ, ゥ							
問 4 化学電池に関する記述として正しいものはどれか。最も適当なものを、次の							
①~④のうちから一つ選べ。 4							
① 二次電池は、充電により繰り返し利用できる電池である。② 燃料電池は、燃料の燃焼により生じる高温気体を利用して発電する電池である。③ 電子が流れ込んで酸化反応が起こる電極を正極という。④ 鉛蓄電池の電解質には、希硝酸が使われている。							
問 5 ケイ素と二酸化ケイ素に関する記述として 誤りを含むもの はどれか。最も適 当なものを、次の ① ∼ ④ のうちから一つ選べ。 5							
 ① ケイ素の結晶は、ダイヤモンドの炭素原子と同じように、ケイ素原子が正四面体構造を形成しながら配列している。 ② ケイ素は、金属元素ではない。 ③ 二酸化ケイ素の結晶は、半導体の性質を示す。 ④ 二酸化ケイ素の結晶では、ケイ素原子と酸素原子が交互に共有結合している。 							
— 23 — (2107—23)							

問3 次の記述ア~ウのうち、物質の状態変化(三態間の変化)が含まれている記述

①~⑦のうちから一つ選べ。 3

イ 降ってきた雪を手で受けとめると、水になった。

ア 海水を蒸留して淡水を得た。

はどれか。すべてを正しく選択しているものとして最も適当なものを、後の

問 6 純物質の気体が,常温・常圧で容器に詰められている。この気体は,酸	素
O_2 ,窒素 N_2 ,アンモニア NH_3 ,アルゴン Ar のいずれかである。この気体	に
は、次の記述 ア~ウ の性質がある。この気体として最も適当なものを、後	の
①~④のうちから一つ選べ。6	

- ア 無色・無臭である。
- イ 容器の中に火のついた線香を入れると、火が消える。
- ウ 密度は、同じ温度・圧力の空気と比べて大きい。
- $\bigcirc O_2$ $\bigcirc N_2$ $\bigcirc NH_3$ $\bigcirc Ar$
- 問 7 メタン CH_4 を完全燃焼させたところ、18g の水 H_2O が生成した。このとき、生成した二酸化炭素 CO_2 は何g か。最も適当な数値を、次の $\bigcirc O$ ~ $\bigcirc O$ のうちから一つ選べ。 $\bigcirc O$ 7 $\bigcirc G$
 - ① 9.0 ② 22 ③ 33 ④ 44 ⑤ 88

問 8 酸と塩基、および酸性と塩基性に関する記述として、 誤りを含むもの はどれ
か。最も適当なものを、次の \bigcirc ~ \bigcirc のうちから一つ選べ。 8
① 水は反応する相手によって酸としてはたらいたり、塩基としてはたらいた
りする。
② 酸の価数および物質量が同じ強酸と弱酸では、過不足なく中和するのに必
要な塩基の物質量は強酸の方が多くなる。
③ 水素イオン濃度を用いると、水溶液のもつ酸性や塩基性の強さを表すこと
ができる。
ることはない。
問 9 下線を付した原子の酸化数を比べたとき、酸化数が最も大きいものを、次の ①~④のうちから一つ選べ。 9
① SO_4^{2-} ② HNO_3 ③ MnO_2 ④ NH_4^+

問10 純物質の気体アとイからなる混合気体について、混合気体中のアの物質量の割合と混合気体のモル質量の関係を図1に示した。0℃,1.0×10⁵ Pa の条件で密閉容器にアを封入したとき、アの質量は0.64gであった。次に、アとイをある割合で混合し、同じ温度・圧力条件で同じ体積の密閉容器に封入したとき、混合気体の質量は1.36gであった。この混合気体に含まれるアの物質量の割合は何%か。最も適当な数値を、後の①~⑥のうちから一つ選べ。ただし、アとイは反応しないものとする。 10 %

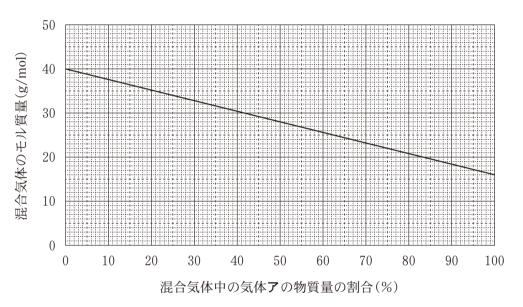


図1 混合気体中の気体アの物質量の割合と混合気体のモル質量の関係

1 19 **2** 25 **3** 34 **4** 60 **5** 75 **6** 88

第2問 宇宙ステーションの空気制御システムに関する次の文章を読み、後の問い (問1~3)に答えよ。(配点 20)

宇宙ステーションで人が生活するには、宇宙ステーション内の空気に含まれる酸素 O₂ と二酸化炭素 CO₂ の濃度を適切に管理する空気制御システムが必要である。

空気制御システムでは、次の式(1)に示すように、水 H_2O の電気分解を利用して O_2 が供給される。また、補充する H_2O の量を削減するために、式(2)のサバティエ 反応の利用が試みられている(図1)。この反応では、触媒を用いて CO_2 と水素 H_2 からメタン CH_4 と H_2O を生成するため、人の呼気に含まれる CO_2 の酸素原子を H_2O として回収できる。

$$2 H_2 O \longrightarrow 2 H_2 + O_2 \tag{1}$$

$$CO_2 + 4 H_2 \xrightarrow{\text{mkg}} CH_4 + 2 H_2O$$
 (2)

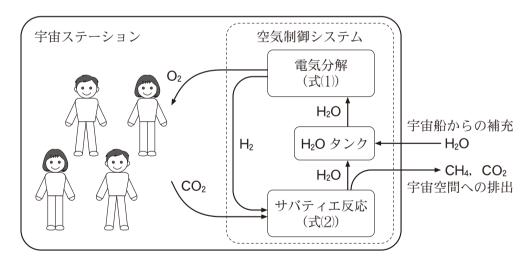


図1 水の電気分解とサバティエ反応を利用した空気制御システムの模式図

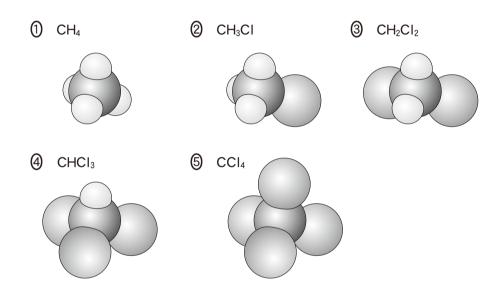
- **問 1** 式(1)の電気分解に関する記述として**誤りを含むもの**はどれか。最も適当なものを、次の**①~④**のうちから一つ選べ。 11
 - 陽極側では O₂ が発生する。
 - ② 発生する O₂ は、水上置換法で捕集できる。
 - ③ 式(1)の反応は酸化還元反応である。
 - **④** 電気分解で発生する H₂ と O₂ の質量比は 1:16 となる。
- **問 2** サバティエ反応の反応物である CO_2 および生成物である CH_4 に関する次の問い $(\mathbf{a} \sim \mathbf{c})$ に答えよ。
 - ${\bf a}$ 式(2)において、 ${\bf CO_2}$ の ${\bf C}$ 原子と ${\bf O}$ 原子が酸化されるか、還元されるか、酸化も還元もされないかの組合せとして最も適当なものを、次の ${\bf 0}$ ~ ${\bf 6}$ のうちから一つ選べ。 12

	C原子	O原子
0	酸化される	酸化も還元もされない
2	酸化される	還元される
3	酸化も還元もされない	酸化される
4	酸化も還元もされない	還元される
6	還元される	酸化される
6	還元される	酸化も還元もされない

b 次の化学反応式ア~エは、いずれも2種類の反応物からCO2が生じる化学反応を示している。ア~エの反応において、2種類の反応物をいずれも1 mol だけ用いて反応させるとき、生成できるCO2の物質量が最も多い反応はどれか。最も適当なものを、後の①~④のうちから一つ選べ。ただし、いずれも記された反応のみが進行するものとする。 13

$$7 \quad CaCO_3 + 2 HCI \longrightarrow CaCI_2 + H_2O + CO_2$$

$$1 \quad (COOH)_2 + H_2O_2 \longrightarrow 2 H_2O + 2 CO_2$$


ウ
$$Fe_2O_3 + 3CO \longrightarrow 2Fe + 3CO_2$$

$$\mathbf{I}$$
 2 CO + O₂ \longrightarrow 2 CO₂

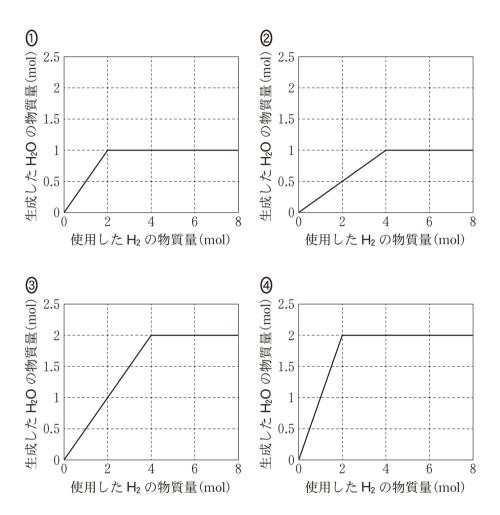
- ① ア ② イ
- ③ ウ
- **4** エ

c CH₄ は常温以下の温度で安定である。しかし、十分な量の塩素と混合して光(紫外線)を照射すると CH₄ の水素原子を塩素原子に置き換えた化合物 CH₃CI、CH₂CI₂、CHCI₃、CCI₄ ができる。CH₄ を含めた五つの化合物のうち、無極性分子はどれか。最も適当なものを、次の $\mathbf{1}$ ~ $\mathbf{5}$ のうちから二つ選べ。ただし、解答の順序は問わない。なお、図は分子の形であり、球の大きさはそれぞれの原子の大きさを反映している。

14 15

問3 図1で示した空気制御システムにおける H_2O の量に関する、次の問い($\mathbf{a} \sim \mathbf{c}$)に答えよ。

図1 水の電気分解とサバティエ反応を利用した空気制御システムの模式図(再掲)


$$2 H_2 O \longrightarrow 2 H_2 + O_2$$
 (1)(再掲)

$$CO_2 + 4 H_2 \xrightarrow{\text{Mey}} CH_4 + 2 H_2O$$
 (2)(再掲)

a 宇宙ステーション内の4人が1日に消費する O_2 の総質量は、およそ 3.2 kg である。式(1)の電気分解で3.2 kg の O_2 を供給するのに必要な H_2O の質量は何 kg か。最も適当な数値を、次の $\bigcirc O_2$ を使給するのに必要な。

① 0.90 ② 1.6 ③ 1.8 ④ 3.2 ⑤ 3.6 ⑥ 7.2

b 式(2)の反応において 1 mol の CO₂ を使用するとき、使用した H₂ と生成した H₂O の物質量の関係を表したグラフとして最も適当なものを、次の①~
 ④のうちから一つ選べ。

 ${f c}$ 式(1)の反応によって $3.2~{f kg}$ の ${f O}_2$ が生成したとき、同時に生成した ${f H}_2$ だけを用いると、式(2)の反応で得られる ${f H}_2{f O}$ の質量は何 ${f kg}$ か。最も適当な数値を、次の ${f O}$ ~ ${f O}$ のうちから一つ選べ。ただし、式(2)の反応に用いる ${f CO}_2$ は十分な量があるものとする。 ${f I8}_{f O}$ ${f kg}$

① 0.90 **②** 1.6 **③** 1.8 **④** 3.2 **⑤** 3.6 **⑥** 6.4