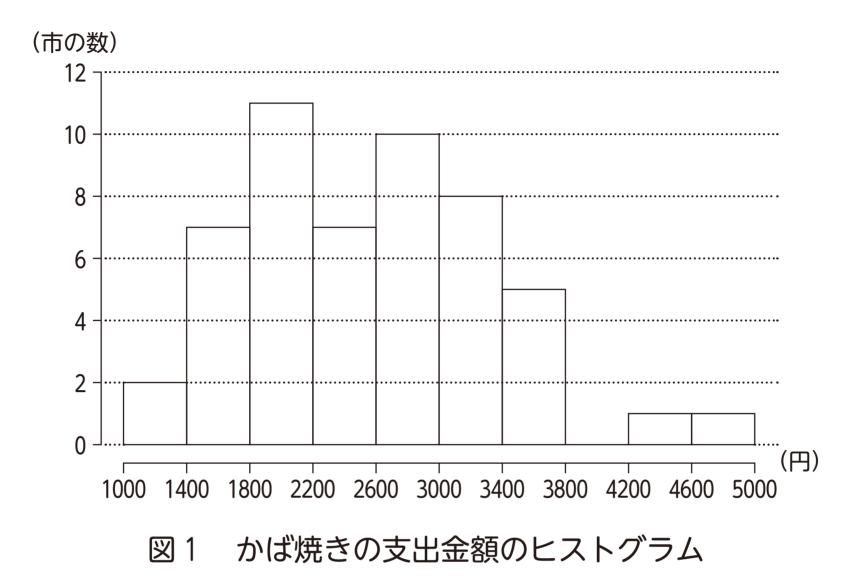
第2間 (必答問題) (配点 30)

(1) 太郎さんは、総務省が公表している 2020 年の家計調査の結果を用いて、地域による食文化の違いについて考えている。家計調査における調査地点は、都道府県庁所在市および政令指定都市(都道府県庁所在市を除く)であり、合計52市である。家計調査の結果の中でも、スーパーマーケットなどで販売されている調理食品の「二人以上の世帯の1世帯当たり年間支出金額(以下、支出金額、単位は円)」を分析することにした。以下においては、52市の調理食品の支出金額をデータとして用いる。

太郎さんは調理食品として、最初にうなぎのかば焼き (以下、かば焼き)に着目し、図1のように52市における かば焼きの支出金額のヒストグラムを作成した。ただし、ヒストグラムの各階級の区間は、左側の数値を含み、右側の数値を含まない。

なお,以降の図や表については,総務省の Web ページをもとに作成している。



- (1) 図1から次のことが読み取れる。
 - 第1四分位数が含まれる階級は ア である。
 - 第3四分位数が含まれる階級は **イ** である。
 - 四分位範囲はウ

ア , イ の解答群

(同じものを繰り返し選んでもよい。)

- **⑥** 1000 以上 1400 未満
- ① 1400以上1800未満
- ② 1800 以上 2200 未満
- ③ 2200以上2600未満
- 4 2600 以上 3000 未満
- ⑤ 3000以上3400未満
- ⑥ 3400以上3800未満
- ⑦ 3800 以上 4200 未満
- ⑧ 4200以上4600未満
- 9 4600 以上 5000 未満

ウの解答群

- ◎ 800 より小さい
- ① 800 より大きく 1600 より小さい
- ② 1600 より大きく 2400 より小さい
- ③ 2400 より大きく 3200 より小さい
- ④ 3200 より大きく 4000 より小さい
- ⑤ 4000 より大きい

- (2) 太郎さんは、東西での地域による食文化の違いを調べる ために、52 市を東側の地域 E (19 市) と西側の地域 W (33 市) の二つに分けて考えることにした。
- (i) 地域 E と地域 W について、かば焼きの支出金額の箱ひげ図を、図 2、図 3 のようにそれぞれ作成した。

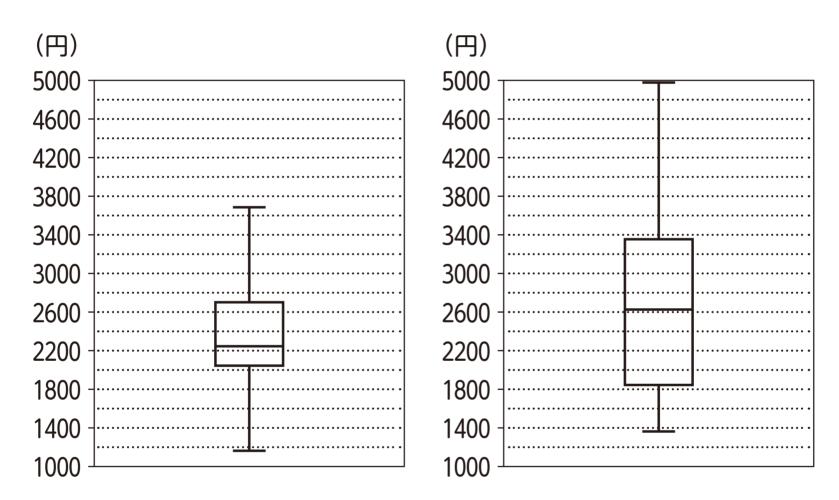


図 2 地域 E におけるかば焼 きの支出金額の箱ひげ図

図 3 地域 W におけるかば焼 きの支出金額の箱ひげ図

かば焼きの支出金額について、図2と図3から読み取れることとして、次の0~3のうち、正しいものは **エ** である。

エの解答群

- 地域 E において、小さい方から 5 番目は 2000 以下である。
- ① 地域 E と地域 W の範囲は等しい。
- ② 中央値は、地域 E より地域 W の方が大きい。
- ③ 2600 未満の市の割合は、地域 E より地域 W の方が 大きい。
- (ii) 太郎さんは、地域 E と地域 W のデータの散らばりの度合いを数値でとらえようと思い、それぞれの分散を考えることにした。地域 E におけるかば焼きの支出金額の分散は、地域 E のそれぞれの市におけるかば焼きの支出金額の偏差の オーである。

オの解答群

- ② 2乗を合計した値
- ① 絶対値を合計した値
- ② 2乗を合計して地域 E の市の数で割った値
- ③ 絶対値を合計して地域 E の市の数で割った値
- ④ 2乗を合計して地域 E の市の数で割った値の平方 根のうち正のもの
- ⑤ 絶対値を合計して地域 E の市の数で割った値の平 方根のうち正のもの
- (3) 太郎さんは, (2) で考えた地域 E における, やきとりの 支出金額についても調べることにした。

ここでは地域 E において、やきとりの支出金額が増加すれば、かば焼きの支出金額も増加する傾向があるのではないかと考え、まず図 4 のように、地域 E における、やきとりとかば焼きの支出金額の散布図を作成した。そして、相関係数を計算するために、表 1 のように平均値、分散、標準偏差および共分散を算出した。ただし、共分散は地域 E のそれぞれの市における、やきとりの支出金額の偏差とかば焼きの支出金額の偏差との積の平均値である。

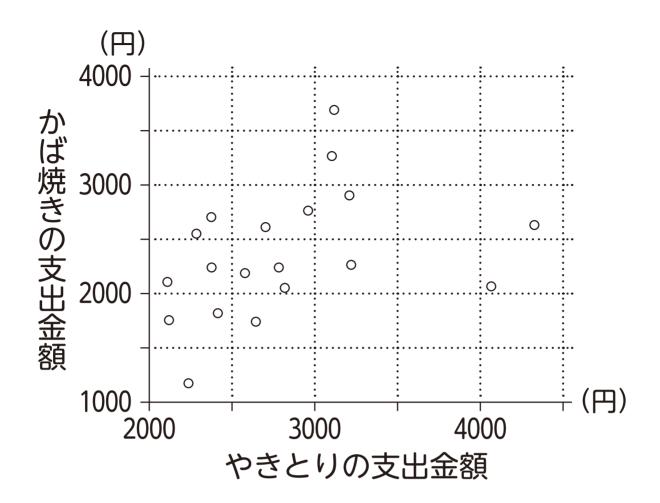


図4 地域 E における、やきとりとかば焼きの支出金額の 散布図

表 1 地域 E における、やきとりとかば焼きの支出金額の 平均値、分散、標準偏差および共分散

	平均値	分散	標準偏差	共分散
やきとりの支出金額	2810	348100	590	124000
かば焼きの支出金額	2350	324900	570	

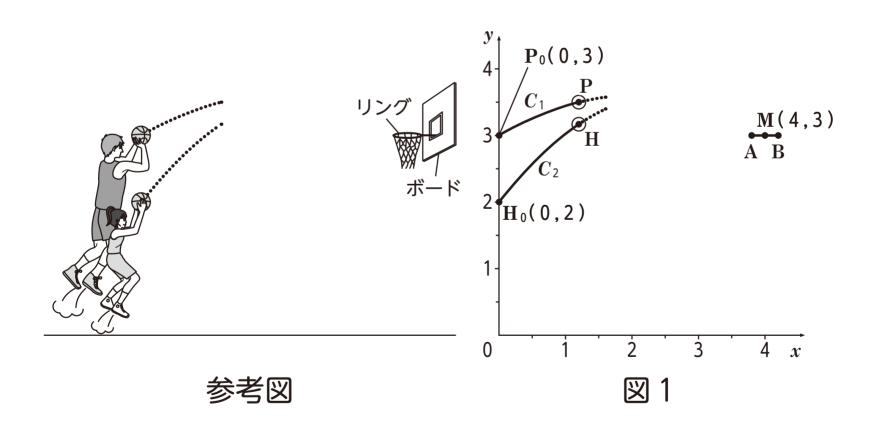
表 1 を用いると, 地域 E における, やきとりの支出金額とかば焼きの支出金額の相関係数は **カ** である。

カ については、最も適当なものを、次の**②**~**9**のうちから一つ選べ。

- \bigcirc 0.62
- (1) 0.50
- \bigcirc 0.37
- \bigcirc 0.19
- (4) 0.02
- **⑤** 0.02
- **6** 0. 19
- 0.37
- **8** 0.50
- 9 0.62

〔2〕 太郎さんと花子さんは、バスケットボールのプロ選手の中には、リングと同じ高さでシュートを打てる人がいることを知り、シュートを打つ高さによってボールの軌道がどう変わるかについて考えている。

二人は、図1のように座標軸が定められた平面上に、プロ選手と花子さんがシュートを打つ様子を真横から見た図をかき、ボールがリングに入った場合について、後の**仮定**を設定して考えることにした。長さの単位はメートルであるが、以降では省略する。



仮定

- 平面上では、ボールを直径 0.2 の円とする。
- リングを真横から見たときの左端を点 A(3.8,3),右端を点 B(4.2,3)とし、リングの太さは無視する。
- ボールがリングや他のものに当たらずに上からリングを通り、かつ、ボールの中心がABの中点M(4,3)を通る場合を考える。ただし、ボールがリングに当たるとは、ボールの中心とAまたはBとの距離が0.1以下になることとする。
- プロ選手がシュートを打つ場合のボールの中心を点 P
 とし、Pは、はじめに点 P₀(0,3)にあるものとする。また、P₀、M を通る、上に凸の放物線を C₁とし、Pは C₁ 上を動くものとする。
- 花子さんがシュートを打つ場合のボールの中心を点 Hとし、Hは、はじめに点 H₀(0,2)にあるものとす る。また、H₀、Mを通る、上に凸の放物線を C₂と し、Hは C₂上を動くものとする。
- 放物線 C₁ や C₂ に対して、頂点の y 座標を「シュートの高さ」とし、頂点の x 座標を「ボールが最も高くなるときの地上の位置」とする。

(1) 放物線 C_1 の方程式における x^2 の係数を a とする。放物線 C_1 の方程式は

$$y = ax^2 - \boxed{+} ax + \boxed{7}$$

と表すことができる。また、プロ選手の「**シュートの高さ**」 は

$$\boxed{\boldsymbol{\tau}}$$
 $a + \boxed{ }$

である。

放物線 C_2 の方程式における x^2 の係数を p とする。放物線 C_2 の方程式は

$$y = p \left\{ x - \left(2 - \frac{1}{8p} \right) \right\}^2 - \frac{(16p - 1)^2}{64p} + 2$$

と表すことができる。

プロ選手と花子さんの「ボールが最も高くなるときの地上の位置」の比較の記述として、次の①~③のうち、正しいものは サ である。

サーの解答群

- ① プロ選手の「ボールが最も高くなるときの地上の位置」の方が、つねに M の x 座標に近い。
- ② 花子さんの「ボールが最も高くなるときの地上の位置」の方が、つねに M の x 座標に近い。
- ③ プロ選手の「ボールが最も高くなるときの地上の位置」の方が M の x 座標に近いときもあれば、花子さんの「ボールが最も高くなるときの地上の位置」の方が M の x 座標に近いときもある。

(2) 二人は、ボールがリングすれすれを通る場合のプロ選手 と花子さんの「**シュートの高さ**」について次のように話して いる。

太郎:例えば、プロ選手のボールがリングに当たらないようにするには、P がリングの左端 A のどのくらい上を通れば良いのかな。

花子: A の真上の点で P が通る点 D を、線分 DM が A を中心とする半径 0.1 の円と接するようにとって考えてみたらどうかな。

太郎:なるほど。Pの軌道は上に凸の放物線で山なりだから、その場合、図2のように、PはDを通った後で線分 DM より上側を通るのでボールはリングに当たらないね。花子さんの場合も、H がこの D を通れば、ボールはリングに当たらないね。

花子:放物線 C_1 と C_2 が D を通る場合でプロ選手と私の[**シュートの高さ**]を比べてみようよ。

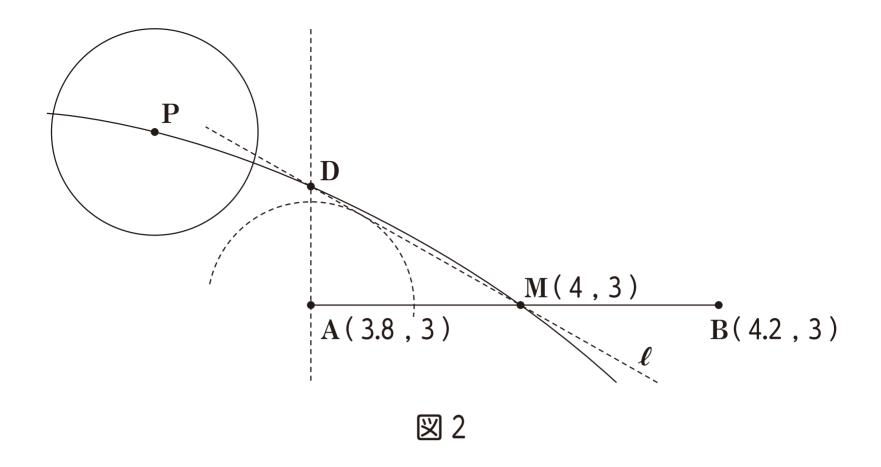


図 2 のように、M を通る直線 ℓ が、A を中心とする半径 0.1 の円に直線 AB の上側で接しているとする。また、A を通り直線 AB に垂直な直線を引き、 ℓ との交点を D とする。このとき、 $AD = \frac{\sqrt{3}}{15}$ である。

よって、放物線 C_1 が D を通るとき、 C_1 の方程式は

$$y = -\frac{\boxed{\flat}\sqrt{\boxed{\lambda}}}{\boxed{\flat}\sqrt{\boxed{\lambda}}}\left(x^2 - \boxed{\updownarrow}x\right) + \boxed{7}$$

となる。

また、放物線 C_2 が D を通るとき、(1) で与えられた C_2 の方程式を用いると、花子さんの「シュートの高さ」は約3.4 と求められる。

以上のことから、放物線 C_1 と C_2 が D を通るとき、プロ選手と花子さんの「シュートの高さ」を比べると、

g の[シュートの高さ]の方が大きく,その差はボール f である。なお, $\sqrt{3}=1.7320508…である。$

タの解答群

- ① 花子さん

チ については、最も適当なものを、次の0~3のうちから一つ選べ。

- 約1個分
- ① 約2個分
- 2 約3個分
- ③ 約4個分